data_utils module¶
- data_utils.generate_linear_regression_dataset(m, b, std, n, seed=None)¶
Generate one-dimensional data with linear trend.
- Parameters
m (float) – Slope of line.
b (float) – Y-intercept of line.
std (float) – Standard deviation of random error.
n (int) – The number of data points.
seed (int) – Random seed.
- Returns
Tuple of numpy.ndarrays of x and y.
- Return type
tuple
Notes
None
- data_utils.generate_non_linear_regression_dataset(b, std, n, seed=None)¶
Generate one-dimensional data with linear trend.
- Parameters
b (float) – Y-intercept of curve.
std (float) – Standard deviation of random error.
n (int) – The number of data points.
seed (int) – Random seed.
- Returns
Tuple of numpy.ndarrays of x and y.
- Return type
tuple
Notes
None
- data_utils.load_cfar10_batch(path)¶
Loads a batch of the CIFAR-10 dataset.
- Parameters
path (str) – Path to the data batch.
- Returns
features (numpy.ndarray) – Shape is (number of data points, width of image, height of image, number of channels) For instance: (10000, 32, 32, 3) The width and height might be the other way around.
labels (numpy.ndarray) – Shape is (number of data points, ). For instance: (10000, ). Includes between 0-9.
Notes
Based on: https://towardsdatascience.com/cifar-10-image-classification-in-tensorflow-5b501f7dc77c
- data_utils.load_label_names()¶
Loads the label names in the CIFAR-10 dataset.
- Parameters
None –
- Returns
The labels as strings - 10 labels corresponding to 0-9.
- Return type
list
Notes
None