initializers module

class initializers.Initializer(seed=None)

Bases: object

Initializer parent class.

seed

Seed of pseudo-random generators such as random parameter initialization.

Type

int

__init__(seed=None)

Constuctor.

class initializers.NormalInitializer(seed, **params)

Bases: initializers.Initializer

Normal, or Gaussian, parameter initializer.

coeff

Multiplicative coefficient of Normal distribution.

Type

float

mean

Mean of Normal distribution.

Type

float

std

Standard deviation of Normal distribution.

Type

float

__init__(seed=None, \*\*params)

Constuctor.

initialize(size)

Initializes parameters by drawing from a Normal distribution.

__repr__()

Returns the string representation of class.

initialize(size)

Initializes parameters by drawing from a Normal distribution.

Parameters

size (tuple) – Tuple of dimensions of the parameter tensor.

Returns

Initialized parameters.

Return type

numpy.ndarray

Notes

None

class initializers.XavierInitializer(seed, **params)

Bases: initializers.Initializer

Xavier initializer. From: Understanding the difficulty of training deep feedforward neural networks

coeff

Multiplicative coefficient of Normal distribution.

Type

float

mean

Mean of Normal distribution.

Type

float

std

None as the Xavier initializer computes on its own the standard deviation of the Normal distribution.

Type

None

__init__(seed=None, \*\*params)

Constuctor.

initialize(size)

Initializes parameters by drawing from a Normal distribution.

__repr__()

Returns the string representation of class.

initialize(size)

Initializes parameters by drawing from a Normal distribution with the Xavier strategy.

Parameters

size (tuple) – Tuple of dimensions of the parameter tensor.

Returns

Initialized parameters.

Return type

numpy.ndarray

Notes

None