nn-blocks
Contents:
nn-blocks
nn-blocks
»
Index
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
|
W
|
X
_
__call__() (losses.LossSmoother method)
(losses.LossSmootherConstant method)
(losses.LossSmootherMovingAverage method)
(text_utils.OneHotEncoder method)
__init__() (activations.Activation method)
(activations.LinearActivation method)
(activations.ReLUActivation method)
(activations.SoftmaxActivation method)
(activations.TanhActivation method)
(initializers.Initializer method)
(initializers.NormalInitializer method)
(initializers.XavierInitializer method)
(layers.Dense method)
(layers.RNN method)
(losses.CategoricalCrossEntropyLoss method)
(losses.CategoricalHingeLoss method)
(losses.Loss method)
(losses.LossSmoother method)
(losses.LossSmootherConstant method)
(losses.LossSmootherMovingAverage method)
(losses.MeanSquaredErrorLoss method)
(lr_schedules.LRConstantSchedule method)
(lr_schedules.LRCyclingSchedule method)
(lr_schedules.LRExponentialDecaySchedule method)
(lr_schedules.LRSchedule method)
(metrics.AccuracyMetrics method)
(metrics.MeanSquaredErrorMetrics method)
(metrics.Metrics method)
(models.Model method)
(optimizers.AdaGradOptimizer method)
(optimizers.Optimizer method)
(optimizers.SGDOptimizer method)
(regularizers.L2Regularizer method)
(regularizers.Regularizer method)
(text_utils.OneHotEncoder method)
__repr__() (activations.LinearActivation method)
(activations.ReLUActivation method)
(activations.SoftmaxActivation method)
(activations.TanhActivation method)
(initializers.NormalInitializer method)
(initializers.XavierInitializer method)
(layers.Dense method)
(layers.RNN method)
(models.Model method)
(regularizers.L2Regularizer method)
(text_utils.OneHotEncoder method)
A
AccuracyMetrics (class in metrics)
Activation (class in activations)
activation (layers.Dense attribute)
activation_h (layers.RNN attribute)
activation_o (layers.RNN attribute)
activations
module
AdaGradOptimizer (class in optimizers)
add_eol_to_text() (in module text_utils)
apply() (opt_utils.GradClipper method)
(opt_utils.GradClipperByNothing method)
(opt_utils.GradClipperByValue method)
apply_grads() (optimizers.AdaGradOptimizer method)
,
[1]
(optimizers.SGDOptimizer method)
,
[1]
apply_lr_schedule() (optimizers.AdaGradOptimizer method)
(optimizers.Optimizer method)
,
[1]
(optimizers.SGDOptimizer method)
apply_schedule() (lr_schedules.LRConstantSchedule method)
,
[1]
(lr_schedules.LRCyclingSchedule method)
,
[1]
(lr_schedules.LRExponentialDecaySchedule method)
,
[1]
B
b (layers.Dense attribute)
(layers.RNN attribute)
backward() (activations.LinearActivation method)
,
[1]
(activations.ReLUActivation method)
,
[1]
(activations.SoftmaxActivation method)
,
[1]
(activations.TanhActivation method)
,
[1]
(layers.BatchNormalization method)
(layers.Dense method)
,
[1]
(layers.Dropout method)
(layers.RNN method)
,
[1]
(models.Model method)
,
[1]
BatchNormalization (class in layers)
bias_h_initializer (layers.RNN attribute)
bias_initializer (layers.Dense attribute)
bias_o_initializer (layers.RNN attribute)
build_cache() (optimizers.AdaGradOptimizer method)
build_model_2_layer_with_bn_with_loss_cross_entropy() (in module test_models)
C
c (layers.RNN attribute)
cache (activations.Activation attribute)
(activations.LinearActivation attribute)
(activations.ReLUActivation attribute)
(activations.SoftmaxActivation attribute)
(activations.TanhActivation attribute)
(layers.Dense attribute)
(layers.RNN attribute)
(losses.CategoricalCrossEntropyLoss attribute)
(losses.CategoricalHingeLoss attribute)
(losses.Loss attribute)
(losses.LossSmootherConstant attribute)
(losses.LossSmootherMovingAverage attribute)
(losses.MeanSquaredErrorLoss attribute)
(optimizers.AdaGradOptimizer attribute)
CategoricalCrossEntropyLoss (class in losses)
CategoricalHingeLoss (class in losses)
char_to_idx() (in module text_utils)
CharByCharSynhthetizer (class in text_utils)
coeff (initializers.NormalInitializer attribute)
(initializers.XavierInitializer attribute)
compile_model() (models.Model method)
,
[1]
compiled (models.Model attribute)
compute() (metrics.AccuracyMetrics method)
,
[1]
(metrics.MeanSquaredErrorMetrics method)
,
[1]
compute_loss() (losses.CategoricalCrossEntropyLoss method)
,
[1]
(losses.CategoricalHingeLoss method)
,
[1]
(losses.MeanSquaredErrorLoss method)
,
[1]
compute_metrics() (models.Model method)
cost_dict (models.Model attribute)
D
data_utils
module
decay_rate (lr_schedules.LRExponentialDecaySchedule attribute)
decay_steps (lr_schedules.LRExponentialDecaySchedule attribute)
decode() (in module text_utils)
Dense (class in layers)
Dropout (class in layers)
E
encode() (in module text_utils)
epsilon (optimizers.AdaGradOptimizer attribute)
eval_numerical_gradient() (in module grad_check)
eval_numerical_gradient_array() (in module grad_check)
F
first_call (losses.LossSmoother attribute)
(losses.LossSmootherConstant attribute)
(losses.LossSmootherMovingAverage attribute)
(optimizers.AdaGradOptimizer attribute)
fit() (models.Model method)
,
[1]
fit_rnn() (models.Model method)
forward() (activations.LinearActivation method)
,
[1]
(activations.ReLUActivation method)
,
[1]
(activations.SoftmaxActivation method)
,
[1]
(activations.TanhActivation method)
,
[1]
(layers.BatchNormalization method)
(layers.Dense method)
,
[1]
(layers.Dropout method)
(layers.RNN method)
,
[1]
(models.Model method)
,
[1]
G
generate_linear_regression_dataset() (in module data_utils)
generate_non_linear_regression_dataset() (in module data_utils)
get_b() (layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
get_beta() (layers.BatchNormalization method)
get_c() (layers.RNN method)
,
[1]
get_db() (layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
get_dbeta() (layers.BatchNormalization method)
get_dc() (layers.RNN method)
,
[1]
get_dgamma() (layers.BatchNormalization method)
get_du() (layers.RNN method)
,
[1]
get_dv() (layers.RNN method)
,
[1]
get_dw() (layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
get_gamma() (layers.BatchNormalization method)
get_gradients() (models.Model method)
,
[1]
get_learnable_params() (layers.BatchNormalization method)
(layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
get_learnable_params_grads() (layers.BatchNormalization method)
(layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
get_lr() (lr_schedules.LRConstantSchedule method)
,
[1]
(lr_schedules.LRCyclingSchedule method)
,
[1]
(lr_schedules.LRExponentialDecaySchedule method)
,
[1]
(optimizers.AdaGradOptimizer method)
(optimizers.Optimizer method)
,
[1]
(optimizers.SGDOptimizer method)
get_opt_grad() (optimizers.AdaGradOptimizer method)
get_reg_grad_w() (layers.Dense method)
,
[1]
get_reg_loss() (layers.BatchNormalization method)
(layers.Dense method)
(layers.RNN method)
,
[1]
(models.Model method)
,
[1]
get_reg_loss_w() (layers.Dense method)
get_trainable_params() (models.Model method)
,
[1]
get_u() (layers.RNN method)
,
[1]
get_v() (layers.RNN method)
,
[1]
get_w() (layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
give_emoji_free_text() (in module text_utils)
grad() (losses.CategoricalCrossEntropyLoss method)
,
[1]
(losses.CategoricalHingeLoss method)
,
[1]
(losses.MeanSquaredErrorLoss method)
,
[1]
(regularizers.L2Regularizer method)
,
[1]
grad_check
module
GradClipper (class in opt_utils)
GradClipperByNothing (class in opt_utils)
GradClipperByValue (class in opt_utils)
grads (layers.Dense attribute)
(layers.RNN attribute)
H
h_shape (layers.RNN attribute)
has_learnable_params (layers.RNN attribute)
hidden_dim (layers.RNN attribute)
I
idx_to_char() (in module text_utils)
if_has_learnable_params() (layers.BatchNormalization method)
(layers.Dense method)
(layers.Dropout method)
(layers.RNN method)
,
[1]
in_dim (layers.Dense attribute)
(layers.RNN attribute)
initialize() (initializers.NormalInitializer method)
,
[1]
(initializers.XavierInitializer method)
,
[1]
Initializer (class in initializers)
initializers
module
K
kernel_h_initializer (layers.RNN attribute)
kernel_initializer (layers.Dense attribute)
kernel_o_initializer (layers.RNN attribute)
kernel_regularizer (layers.Dense attribute)
(layers.RNN attribute)
L
L2Regularizer (class in regularizers)
layers
module
layers (models.Model attribute)
length (text_utils.OneHotEncoder attribute)
limit_text_length() (in module text_utils)
LinearActivation (class in activations)
load_cfar10_batch() (in module data_utils)
load_label_names() (in module data_utils)
Loss (class in losses)
loss (models.Model attribute)
loss() (regularizers.L2Regularizer method)
,
[1]
loss_dict (models.Model attribute)
loss_smoother (losses.CategoricalCrossEntropyLoss attribute)
(losses.CategoricalHingeLoss attribute)
(losses.MeanSquaredErrorLoss attribute)
losses
module
LossSmoother (class in losses)
LossSmootherConstant (class in losses)
LossSmootherMovingAverage (class in losses)
lr (lr_schedules.LRConstantSchedule attribute)
(lr_schedules.LRCyclingSchedule attribute)
(lr_schedules.LRExponentialDecaySchedule attribute)
(lr_schedules.LRSchedule attribute)
(optimizers.AdaGradOptimizer attribute)
(optimizers.Optimizer attribute)
(optimizers.SGDOptimizer attribute)
lr_dict (models.Model attribute)
lr_initial (lr_schedules.LRConstantSchedule attribute)
(lr_schedules.LRCyclingSchedule attribute)
(lr_schedules.LRExponentialDecaySchedule attribute)
(lr_schedules.LRSchedule attribute)
lr_max (lr_schedules.LRCyclingSchedule attribute)
lr_schedule (optimizers.AdaGradOptimizer attribute)
(optimizers.Optimizer attribute)
(optimizers.SGDOptimizer attribute)
lr_schedules
module
LRConstantSchedule (class in lr_schedules)
LRCyclingSchedule (class in lr_schedules)
LRExponentialDecaySchedule (class in lr_schedules)
LRSchedule (class in lr_schedules)
M
make_decoded_dataset() (in module text_utils)
make_encoded_dataset() (in module text_utils)
make_one_hot_encoded_dataset() (in module text_utils)
mean (initializers.NormalInitializer attribute)
(initializers.XavierInitializer attribute)
MeanSquaredErrorLoss (class in losses)
MeanSquaredErrorMetrics (class in metrics)
metrics
module
Metrics (class in metrics)
metrics (models.Model attribute)
metrics_dict (models.Model attribute)
Model (class in models)
models
module
module
activations
data_utils
grad_check
initializers
layers
losses
lr_schedules
metrics
models
opt_utils
optimizers
regularizers
test_activations
test_batch_normalization_layer
test_dense_layer
test_dropout_layer
test_initializers
test_losses
test_lr_schedules
test_metrics
test_models
test_opt_utils
test_optimizers
test_regularizers
text_utils
viz_utils
N
name (losses.CategoricalCrossEntropyLoss attribute)
(losses.CategoricalHingeLoss attribute)
(losses.MeanSquaredErrorLoss attribute)
(metrics.AccuracyMetrics attribute)
(metrics.MeanSquaredErrorMetrics attribute)
None (metrics.Metrics attribute)
NormalInitializer (class in initializers)
numerical_gradient_check_model() (in module grad_check)
O
OneHotEncoder (class in text_utils)
opt_utils
module
Optimizer (class in optimizers)
optimizer (models.Model attribute)
optimizers
module
out_dim (layers.Dense attribute)
(layers.RNN attribute)
P
plot_accuracies() (in module viz_utils)
plot_costs() (in module viz_utils)
plot_losses() (in module viz_utils)
plot_lrs() (in module viz_utils)
R
reg_loss (models.Model attribute)
reg_rate (regularizers.L2Regularizer attribute)
(regularizers.Regularizer attribute)
Regularizer (class in regularizers)
regularizers
module
ReLUActivation (class in activations)
repr_str (losses.CategoricalCrossEntropyLoss attribute)
(losses.CategoricalHingeLoss attribute)
(losses.LossSmoother attribute)
(losses.LossSmootherConstant attribute)
(losses.LossSmootherMovingAverage attribute)
(losses.MeanSquaredErrorLoss attribute)
reset_hidden_state() (layers.RNN method)
RNN (class in layers)
S
sample() (text_utils.CharByCharSynhthetizer method)
seed (initializers.Initializer attribute)
set_b() (layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
set_beta() (layers.BatchNormalization method)
set_c() (layers.RNN method)
,
[1]
set_gamma() (layers.BatchNormalization method)
set_learnable_params() (layers.BatchNormalization method)
(layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
set_trainable_params() (models.Model method)
,
[1]
set_u() (layers.RNN method)
,
[1]
set_v() (layers.RNN method)
,
[1]
set_w() (layers.Dense method)
,
[1]
(layers.RNN method)
,
[1]
SGDOptimizer (class in optimizers)
SoftmaxActivation (class in activations)
std (initializers.NormalInitializer attribute)
(initializers.XavierInitializer attribute)
step (lr_schedules.LRConstantSchedule attribute)
(lr_schedules.LRCyclingSchedule attribute)
(lr_schedules.LRExponentialDecaySchedule attribute)
(lr_schedules.LRSchedule attribute)
step_size (lr_schedules.LRCyclingSchedule attribute)
synthetize() (in module text_utils)
T
TanhActivation (class in activations)
test_accuracy_metrics() (in module test_metrics)
test_activations
module
test_batch_normalization_layer
module
test_batch_normalization_layer() (in module test_batch_normalization_layer)
test_categoical_cross_entropy_loss() (in module test_losses)
test_categorical_hinge_loss() (in module test_losses)
test_dense_backward_relu_linear() (in module test_dense_layer)
test_dense_backward_softmax() (in module test_dense_layer)
test_dense_forward() (in module test_dense_layer)
test_dense_layer
module
test_dense_param_init() (in module test_dense_layer)
test_dropout() (in module test_dropout_layer)
test_dropout_layer
module
test_grad_clipper_by_value() (in module test_opt_utils)
test_initializers
module
test_l2_regularizer() (in module test_regularizers)
test_linear_activation() (in module test_activations)
test_losses
module
test_lr_constant_schedule() (in module test_lr_schedules)
test_lr_cycling_schedule() (in module test_lr_schedules)
test_lr_exponential_decay_schedule() (in module test_lr_schedules)
test_lr_schedules
module
test_metrics
module
test_models
module
test_models() (in module test_models)
test_normal_initializer() (in module test_initializers)
test_opt_utils
module
test_optimizers
module
test_regularizers
module
test_relu_activation() (in module test_activations)
test_sgd_optimizer() (in module test_optimizers)
test_softmax_activation() (in module test_activations)
test_tanh_activation() (in module test_activations)
test_xavier_initializer() (in module test_initializers)
text_utils
module
U
u (layers.RNN attribute)
unique_characters() (in module text_utils)
update_cache() (optimizers.AdaGradOptimizer method)
V
v (layers.RNN attribute)
viz_utils
module
W
w (layers.Dense attribute)
(layers.RNN attribute)
X
XavierInitializer (class in initializers)